ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize
نویسندگان
چکیده
Calcium-dependent protein kinases (CDPKs) have been shown to be involved in abscisic acid (ABA)-mediated physiological processes, including seed germination, post-germination growth, stomatal movement, and plant stress tolerance. However, it is not clear whether CDPKs are involved in ABA-induced antioxidant defence. In the present study, the role of the maize CDPK ZmCPK11 in ABA-induced antioxidant defence and the relationship between ZmCPK11 and ZmMPK5, a maize ABA-activated mitogen-activated protein kinase (MAPK), in ABA signalling were investigated. Treatments with ABA and H(2)O(2) induced the expression of ZmCPK11 and increased the activity of ZmCPK11, while H(2)O(2) was required for the ABA-induced increases in the expression and the activity of ZmCPK11. The transient gene expression analysis and the transient RNA interference (RNAi) test in protoplasts showed that ZmCPK11 is involved in ABA-induced up-regulation of the expression and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), and in the production of H(2)O(2). Further, ZmCPK11 was shown to be required for the up-regulation of the expression and the activity of ZmMPK5 in ABA signalling, but ZmMPK5 had very little effect on the ABA-induced up-regulation of the expression and the activity of ZmCPK11. Moreover, the transient gene expression analysis in combination with the transient RNAi test in protoplasts showed that ZmCPK11 acts upstream of ZmMPK5 to regulate the activities of antioxidant enzymes. These results indicate that ZmCPK11 is involved in ABA-induced antioxidant defence and functions upstream of ZmMPK5 in ABA signalling in maize.
منابع مشابه
Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling
In maize (Zea mays), abscisic acid (ABA)-induced H(2)O(2) production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H(2)O(2). However, the mechanism for the regulation of H(2)O(2) production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (...
متن کاملMAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize
Brassinosteroid (BR)-induced antioxidant defence has been shown to enhance stress tolerance. In this study, the role of the maize 65 kDa microtubule-associated protein (MAP65), ZmMAP65-1a, in BR-induced antioxidant defence was investigated. Treatment with BR increased the expression of ZmMAP65-1a in maize (Zea mays) leaves and mesophyll protoplasts. Transient expression and RNA interference sil...
متن کاملResearch Article: Extraction of abscisic acid and gibberellin from Sargassum muticum (Phaeophyceae) and Gracilaria corticata (Rhodophyta) harvested from Persian Gulf
Phytohormones are present in seaweeds but little is known about occurrence and content of them in seaweeds of Persian Gulf. The aim of this study was extraction of abscisic acid and gibberellin in Sargassum muticum and Gracilaria corticata. The seaweeds were collected bimonthly over one year at Bushehr coasts, Persian Gulf, during a range of environmental conditions. We explored new HPLC method...
متن کاملNitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize
Nitric oxide (NO), hydrogen peroxide (H2O2), and calcium (Ca2+)/calmodulin (CaM) are all required for abscisic acid (ABA)-induced antioxidant defence. Ca2+/CaM-dependent protein kinase (CCaMK) is a strong candidate for the decoder of Ca2+ signals. However, whether CCaMK is involved in ABA-induced antioxidant defence is unknown. The results of the present study show that exogenous and endogenous...
متن کاملComparative effects of abscisic acid and two Sulfonamide compounds on tomato under drought conditions . Leila Zeinali Yadegari*, Reza Heidari, Jalil Khara
The effects of exogenous abscisic acid (ABA) and its two agonists, Sulfacetamide (Sa) and Sulfasalazine (SS) on tolerance of tomato (Lycopersicon esculentum Mill. Cv. Super chief) under drought stress were studied. Eight-week plants were treated with ABA (25 and 50 mg/L), Sulfacetamide (Sa) (25, 50 and 100 mg/L) and Sulfasalazine (SS) (25, 50 and 100 mg/L). Solutions were sprayed daily and samp...
متن کامل